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Efficient, new algorithms that require less formal manipulation than previous implemen- 
tations have been formulated for the numerical solution of the Darwin model. These new 
procedures reduce the effort required to achieve some of the advantages that the Darwin 
model offers. Because the Courant-Friedrichs-Lewy stability limit for radiation modes is 
eliminated, the Darwin model has the advantage of a substantially larger time-step. Further, 
without radiation modes, simulation results are less sensitive to enhanced particle fluctation 
noise. We discuss methods for calculating the magnetic field that avoid formal vector decom- 
position and offer a new procedure for finding the inductive electric field. This procedure 
avoids vector decomposition of plasma source terms and circumvents some source gradient 
issues that slow convergence. As a consequence, the numerical effort required for each of the 
field time-steps is reduced, and more importantly, the need to specify several nonintuitive 
boundary conditions is eliminated. 0 1987 Academic press, Inc. 

I. INTRODUCT~~N 

It is frequently useful to simulate low-frequency electromagnetic (EM) plasma 
phenomena without time resolution of purely EM modes. The Darwin or 
magnetoinductive limit [l-5] of Maxwell’s equations provides a model that 
neglects retardation effects and therefore neglects plasma source coupling to purely 
EM modes. Many nonneutral EM models can be constructed that neglect 
radiation; however, the Darwin model accomplishes the radiationless limit while 
retaining the correct particle Lagrangian through terms of order v2/c2. This is a 
higher order than other models in common use. In addition, the Darwin model 
retains that part of the displacement current necessary for the charge continuity 
equation to be satisfied. In the field solution for nonneutral plasma models this is 
especially important. 

Darwin simulation models have at least two numerical advantages over fully EM 
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efs. first, the Darwin model eliminates the rather restrictive CFE conditi 
[6] on the time step. Roughly, this condition is a stability constraint such t 
cannot propagate ore than the minimum computational cell dimension in a time 
step. A second a antage, pointed out by Nielson and Lewis CL?], is that the 

arwin model provides relief from “excessive bremsstrahl~ng.” Particle re~rese~- 
tations of plasmas exhibit anomalously large fluctuations resulting from t 
relatively small ratio of simulation to real particles. These ~~~t~atious drive n-m 
more than realistic amounts of energy into purely E modes. Thus, full E 

quire more particles per simulation cell than Darwin model codes to cant 
ctuation levels. 
A disadvantage of the Darwin model is that the field solution is mire compHex 

than the full EM models. The full set of Maxwell’s equations are hyperb 
character and lend themselves to straightforward leapfrog schemes in which 

vanced in time with a simple sweep over the mesh. The arwin limit of 
axwell’s equations is a system of field equations that has instantaneous 

propagation of fields throughout the system given the instantaneous source ter 
Although the Darwin field solution needs to be carried out fewer times 
the larger At, each field solve requires more work to propagate the fief 
due to source and induction terms throughout the mesh. Careful 

ion and rapid elliptic solution techniques are 
e model. In particular, the elliptic solution me 
mation is propagated across the mesh quickly. 

using point relaxation methods can take more effort than 
hyperbolic model. 

A strai~btforward implementation of the Darwin model 
the “standard” method) requires vector decomposition of some plasma source terms 
into irrotational and solenoidal parts. As will be diseussed, the standard method 
seems to necessitate vector decomposition of source terms as weff as ‘6~~verge~ee 
cleaning” (the process of decomposing a vector and discardi 
inside iteration loops for the solution of the inductive part 

.A more difficult problem is that boundary conditions mu 
vector decompositions for which no source of intuition is vailable. As more 
general boundary conditions are required to properly I 
interrelatedness of these conditions increases. In Fig. 1 
example of a simulation region with complicated boundaries that . 

for more intuitive techniques. This example comes 
arwin simulation of an eiectron gun with internal cat 
e have recently found ways to avoid many of the most ~ha~~e~gi~g boundary 

conditions. The purpose of this paper is to present a way of e~~rn~~at~~g or 
strea~~~~i~g some of this “extra” work while still retaining all the 
original arwin limit. The Darwin limit of axweli’s equations 
tion ‘if. In Section III a new streamlined prescription for ac~omp~is 
solution is presented. Test cases verifying the new strea~~~~ed method are given in 
Section w. 
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FIG. 1. A representative example of a simulation region with complicated internal boundaries that 
motivated our search for techniques that do not require decomposition of the plasma source terms J and 
,i. This example comes from an axisymmetric Y-Z Darwin simulation of an electron gun with internal 
cathode-anode placement. 

II. THE DARWIN MODEL 

The essence of the Darwin model is to neglect only the inductive or solenoidal 
part (denoted by subscript t) of the displacement current. The resulting field 
equations are 

V x B = h/c J,, (14 

V.B=O, (lb) 

v x v x E = -47(/2 jr, (lc) 

V.E=4np (Id) 

in which E and B are the electric and magnetic fields and p and J are the plasma 
source terms that are obtained by integrating over the ensemble of moving point 
charges. We have used a combination of Gauss’s law and the charge continuity 
equation to obtain J, = J + e,/c. A derivation of the model can be found in Nielson 
and Lewis [2]. 

A straightforward implementation of these equations requires vector decom- 
position into irrotational (denoted by subscript I) and solenoidal parts. Our 
prescription for the decomposition of a general vector field G is accomplished by 
writing that vector field as the sum of irrotational and solenoidal vectors, 

G=G,+G,, (24 

where 

Gl = -VI). (2b) 

Taking the divergence of Eq. (2a) yields the Poisson equation 

V”$= -V-G. PI 
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Solving for + with appropriate boundary conditions provides the irrotation 
i using Eq. (2b). The solenoidal part is obtained by subtracting Gi fro 

original vector 

G,=G-G,=G+B$. 

The boundary conditions required for Eq. (2~) can be devised from the 
mathematical requirement of specifying the normal component of G, ( = 
the simulation boundaries. It can be shown that a decomposition according 
rules is unique [8,9]. We take this procedure as our de~nition of the irrotat~~~~~ 
and solenoidal decomposition of a vector field. 

The Darwin limit of Maxwell’s equations require decomposition 
necessitating specification of the normal components of .I, and 
practical solutions of this set of equations require divergence 
solution of Eq. (la) as well as E, in the solution of Eq. (1~). 
are needed on all simulation boundaries for each of these decompositions. 
these choices require intuition about quantities whose properties are 
because of their remote connection to physical variables. With nonneutra 
that have significant charge and current densities near internal co 
developing a useful Darwin model can be very challenging. 

III. STREAMLINED So~u~~or*r 

Several techniques have been developed for eliminating some of rmal 
manipulation that seems to be required by the standard solution of t rwin 
model. The main point of our streamlined method is that decomposition of source 
terms can be eliminated, thus avoiding the specification of bo~~dary ~o~ditio~s for 
quantities for which intuition is weak. Another benefit is the reduction in com- 
putation-especially important for iterative solutions. We have 
streamlined E, iteration procedure that provides the soluti 
decomposition. We first discuss the B calculatio 
for the E, calculation and the principles for avoi position 
introduced without the complication of iteration. 

II1.a. Streamhed 

In general, there are two methods of solving for : the first method solves for t 
magnetic vector potential A and obtains B by taking the curl of A. This ethod 
ensures is purely solenoidal. For this method the magnetic field solution is 
streamlined by avoiding decomposition o the current sOU*Ge term, noting that 
spurious values of A, do not contribute to In the second method we solve for 
directly. In this method it is not necessary to decompose t 
dary conditions must be carefully chosen to guarantee = 0. This met 
streamlined in the sense that source decomposition is eliminated by a curl 
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operation. Both methods are presented, since their usage is dependent on the par- 
ticular physics that is being studied. For example, in the case of a theta pinch with a 
voltage specified at a boundary, it is most natural to work with the vector potential. 
The voltage for this case is easily entered as the time derivative of the tangential 
components of A. 

In the first method, we replace B in Eqs. (la), (lb) by 

B=VxA. (3) 

This choice ensure V * B = 0 since V. (V x A) = 0. Substituting Eq. (3) into Eq. (la), 
we have the governing equation 

VxVxA=47t/cJ, (4) 

which becomes 

V2A = -h/c J, (5) 

in the Coulomb gauge using the vector identity 

V’G=V(V.G)-VxVxG, (6) 

assuming that we have accumulated the total current J from the plasma time 
advance. The standard solution of Eq. (5) is to first decompose J using Eqs. (2~) 
(2d) with boundary conditions for (2~) that involve specifying the normal com- 
ponent of J, ( = fi * VI/) on all boundaries. Generally, physics rationale for this 
boundary condition can be based on conditions used for the E calculation: the nor- 
mal component fi * E can be related to the emitted normal current. 

As we have already stated, the standard procedure just described involves more 
work than necessary. If we fail to adequately decompose J in steps (2c), (2d), J, 
will have an irrotational part. Since vector decomposition is unique, we must then 
have 

V(V * A) = -471/c Jl # 0, (7) 

which violates the Coulomb gauge condition in the interior of the mesh. For- 
tunately, B as given by Eq. (3) is invariant to this error-leading us to the 
streamlined approach. Obviously, there is no penalty for doing a very poor job of 
finding J, from J, so we may dispense with the decomposition step altogether. We 
solve 

V2A = -h/c J (8) 

directly and then extract B by application of Eq. (3). 
Note that in eliminating the decomposition we have also obviated the boundary 

conditions associated with the Poisson solution that Eq. (2~) needed to decompose 
J. Boundary conditions required for Eq. (8) are the same as used in the standard 
method in Eq. (5). 

The second method avoids the divergence-clean of J by taking the curl of 
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Eq. (la) directly. This method is suitable in cases where boundary ~O~ditiQ~s are 
le. The curl of Eq. (la) gives 

VxVxB=47L/c (9) 

which eliminat the decomposition of 3, sin I’ Using Eq. (4.i we 

V2B= -47c/c (10) 

using boundary conditions that require V * =Q oy1 the boundary. Fo 
with Cartesian geometry and B, Dirichlet condition BY (x = 0, y), the a 
Pa, boundary condition is the Neumann condition aS,/cix = -aB,/ay at 
obtain from the solution of Eq. (10) a vector that satisfies 
addition, satisfies 

which implies V. B = 0 everywhere. 
For completeness, a combination of these two metho s, useful in two dime~sio~s~ 

eliminates decomposition by introducing a flux function equation. The flux 
is simply proportional to the component of the magnetic vector potential n 
the two-dimensional plane of interest. The equation to be solved is then th 
component of Eq. (5). No decomposition is necessary because, in two dimensions, 

ormal must be purely solenoidal; the normal component n have no gradient con- 
bution by definition. The curl of this flux function provi 

in the computational plane. The normal component Bnormal corn 
field description and may be computed from the curl of Eq 
equation is 

1II.b. Streamlined E Solution 

The total electric field E can be written as the sum of the inductive or s~le~oi~~~ 
part E, and the electrostatic or irrotational part E,, which can be derived from the 
electrostatic potential @. Writing this sum as E = f - VQr and sub$tit~ti~ 
Eq. (ld), we get Poisson’s equation 

V2@ = -4rcp (13) 

for the n-rotational electric field, where p is the charge density. 
The equation for E, in Darwin simulation models requires developing an ~rn~~~~~t 

representation for 5. In previous work [2,43 has been obtained by ad the 
momentum equations for each species so that . (16) can be written 

V2E, = 4nJc2 jt = 47c/c2[D + (14) 
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where D represents divergence of the kinetic energy tensors, p is the sum of the 
plasma frequencies, and 5 is the corresponding quantity associated with the currents 
lz41. 

TO motivate the streamlined procedure for solving Eq. (14), we first review the 
standard Darwin solution procedure. Since the right-hand side of Eq. (14) explicitly 
contains E, in an expression that must be vector decomposed, iteration (denoted by 
the superscript n) will be required to obtain a consistent solution. A straightforward 
algorithm used previously for the standard method is: 

(1) Form J using the latest E: and vector-decompose to find Jl using Eq. (2~) 
and (2b). 

(This requires specifying the normal component of J, on the boundaries.) 

(2) Solve 

V’E; i- l = 4nlc2 J:. 

(Boundary conditions must ensure that V * E, = 0 on the boundaries.) 

(15) 

(3 ) Divergence-clean E; + i using Eq. (2~) and (2b) to eliminate any spurious 
irrotational part due to imperfect decomposition of J in step (1). 

(4) Set n equal to iz + 1; check convergence; if not converged, go to step (I). 
(5) Add E; and E, to get the final E. 

The decomposition in step (3) is required to ensure E, does not develop an 
irrotational part as the iteration progresses should the Jt from step (1) not be 
purely solenoidal. Furthermore, finite mesh considerations in the solution of 
Eq. (15) also require divergence cleaning to avoid growth of any spurious 
irrotational part of E,. A straightforward boundary condition for this step is that 
the normal gradient of $ (which is - (E,), . ii) be set to E, . A-assuming that we 
wish to have the divergence-cleaned E, have a zero normal component everywhere. 
More general boundary conditions can be difficult to implement; we defer this dis- 
cussion until our streamlined procedure has been introduced. 

Assuming acceptable solutions for the boundary condition issues, the five-step 
standard procedure just outlined may converge slowly and is quite expensive due to 
the number of elliptic solutions required in each iteration. Convergence can be sub- 
stantially enhanced with the addition of the explicit term PE, to each side [2]. 
Equation (14) then becomes 

V’E: + 1 - 471/c’ PE; + 1 = 4+2(J; - pE:). (16) 

The additional term is most important when p is nearly constant in space so that 
PE, is roughly equal to (pE,),-the term embedded in Jt. In this case the right- 
hand side of Eq. (16) becomes independent of E,. The addition loses effectiveness as 
the density becomes strongly inhomogeneous. A side effect of this additional term is 
that an irrotational piece of E, may develop during the overall iteration satisfying 
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V2E;+‘-47C/C2& n+ i = 0. Thus, step (3) is essential to eliminate this irrotati~~a~ 
part when using Eq. (16). 

We propose a streamlined algorithm for the solenoidal E calculation that 
es substantial improvements over the standard implementation just presen- 

ted. In practice, the source which is readily available is 5, not the solenoi 
Our improvements result largely from a better iteration procedure that 
require a formal decomposition of the right-hand side of Eq. (14), thus 
the most difficult boundary issues concerning j, * iz. The fundamental str 
streamlined method is to solve an equation for E, with the total j as the source. 
This strategy is similar to the first B solution in Section II1.a ex6ept that we cannot 
ignore the spurious irrotational part of E,. We must ensure V SE, = 0 and, 
therefore, we add an additional irrotational part to Eq. ( 14) that compensates for 
the use of the entire J, 

V*E, - V’(V$) = 4.7~1~~ 4n-u 

Defining the variable 5 = E, - V$, Eq. (17) becomes 

The irrotational part of Eq. (17) is an elliptic equation for V$ with source 
(4nJc2) 5,. A unique solution to this equation could be obtained by specifying a 
boundary condition for V$. Thus, by superposition a consistent boundary 6on- 
dition for Eq. (18) is found by specifying the given E, boundary condition modified 
by a contribution from @. Before presenting this modification, we first consider the 
boundary conditions we require E, to satisfy. 

A well-posed formulation for the solution of Eq. (14) for E, requires specitication 
of either Dirichlet or Neumann boundary conditions on all boundaries. The choice 
of these boundary conditions must be consistent with V 1 E, = 0. We choose to 

tangential and then infer boundary conditions on normal components 
from V-E, =O. For example, in a Cartesian region a Dirichlet boundary 
specification of E,, on a horizontal boundary implies the Neumann condition 
aE,,/ay = -JE,,/dx on that horizontal boundary for the E, equation This is 
sin&r in spirit to guaranteeing V * B = 0 as discussed in Section III.a for the 
magnetic field solution. 

Now we consider how these conditions are reflected in the boundary ~o~~iti~~s 
for 5 in Eq. (18). In the case of a Dirichlet boundary condition for the E, solution, 
we use 

5(b) = E,(b) - Wdb). 1191 
where the argument b signifies evaluation on the boundary. In the case of a 
Neumann boundary condition in the E, solution, we use the normal derivative of 
Eq. (19). Neither of these conditions can be applied without knowing the properties 
of $ on the boundary. 
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The equation for $ is obtained from the divergence of the defining relation for 4 
which is 

m/k -v-t. (24)) 

The boundary condition for Eq. (20) can simply be Dirichlet zero for $ because 
whatever Vt,b may be, the boundary value is communicated through Eq. (19) to 
Eq. (18). Similarly for the Neumann condition, the normal derivative of Vtj on the 
boundary is communicated through the normal derivative of Eq. (19) to Eq. (18). 
Upon solving Eq. (20), we immediately have the required boundary condition 
needed to solve Eq. (18). Technically, Eqs. (18) and (20) must be solved 
simultaneously, but in practice iteration over these equations has been sufficient. 

Since the right-hand side of Eq. (16) does not need to be formed and then 
divergence-cleaned, we can move the E, term in j to the left-hand side to speed 
convergence. Displaying explicitly the functional dependences, we have 

where t1 = - V$ and iteration has been introduced with the superscript n. At 
convergence, we have 

V’4 - 47t/c2 &, = 4n/c2[D + ,uE, + 6 x B]. (22) 

The streamlined solution procedure for g consists of the following steps: 

(1) Solve Eq. (21) for 5”” using appropriate boundary conditions and the 
most recent *. 

(2) Check convergence of kntl; if converged, go to step (4). 
(3) Find r+P+ ‘-the first step of a Gn+’ decomposition-using 

Vyn+l= -v.g”f’ (23) 

with Dirichlet rl/ = 0 boundary conditions. Set II equal to PI + 1; go to step (1). 
(4) Add E:+l (=g+VyY”) and E, to get the final E. 

As previously discussed, the appropriate boundary conditions to ensure that the 
solution of Eq. (22) will contain the desired E, are needed for steps (1) and (3) and 
are relatively easy to apply. The normal component of & ( = - Vrl/) is automatically 
incorporated without any user input. Further, note if V. 5 = 0, then the solution of 
Eq. (23) with Dirichlet boundary conditions gives $ = 0 everywhere. Thus, ti is seen 
to be the scalar function that precisely compensates for the longitudinal part of j in 
Eq. (17). 

The boundary conditions needed for the iterative solution of Eq. (21) can now be 
explicitly stated. For a given component of Eq. (21), we choose Dirichlet boundary 
conditions E,(b) 1 tan on those boundaries that are tangential to that component. 
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e use the subscripts tan and nor to signify the tangential and normal com- 
ponents, respectively.) This condition on E, ita,, in terms of k(b) / tan is 

S(b) Itan =E,(b) Itan -W4bt /tan. (24) 

or the normal component of Eq. (21) on this same ary, there is no 
freedom in the normal derivative of 5 if it is to be consistent with V * 
Requiring the divergence to be zero on the boundary lea s to the ~~~mmn 
condition 

~,,rCE,(~) I,,,1 = -~,,,[lE,~~~ ltml 125) 

which, using Et = 5 + V$, can be written 

~,,,CS”+ l(b) lml = - ~,,,CE,(b) I,,,1 - C,,V@b. (26) 

Finally, if $ is a constant along the boundary, its derivative along the boundary 
vanishes, and using Eq. (20), the condition reduces to 

These boundary constraints, coupled with the last application of step (S), completes 
the solution for E,. The streamlined method obviates the specification of 5) . A on 
the boundaries-the usual difficulty with step (3). 

Finally, we emphasize again that since j no longer needs to be decomposed 
in the streamlined method, we are spared the difficulty of specifying boun 
conditions on .k, ri, which are required in the standard method. 

IV. TEST CASES 

We now present a series of tests that verify the new streamlined Darwin methods 
produce the correct fields. Numerical implementation of either the standard or 
streamlined model requires the ability to decompose vectors with some de 
accuracy. Ideally, a divergence-cleaned vector will in fact produce a satisfactory 
zero when subjected to the numerical divergence operation. The most con 
way to guarantee this behavior is to use a suitably interleaved mesh su 
V * V@ = 0. To test the concepts presented here, it is sufficient to use a less 
ceil-centered mesh. The discrete grid implemented in our test code is given 

Xj =Xmin $- (i- 1.5)(X,,, -x,i,)/N, =Xmin + (i- 1.5) AX, 628a) 

y, = Ymin + (j- l.5)( Ym,, - Ymi,)/N, = Ymin + (j- 1.5) Ay. (28b) 

We simplify our problem further by allowing arbitrary boundary conditions on t 
x boundaries but let the system be periodic in the y direction. e use 
Xmin = ym~n = O5 xmax = ymax = 20, and N, = NY = 42 in the examples presented 
here. 
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FIG. 2. Contours of constant J, used as the input current for the B calculation test. 

B Tests 

The direct B solution is tested to demonstrate the ability to solve for a zero- 
divergence magnetic field. This test also shows a practical example of successfully 
applying boundary conditions consistent with zero divergence. The effect of this 
requirement has been much easier to study in the direct B solution where 
interrelated numerical iteration issues are not present. 

To initialize the direct B calculation, we select an arbitrary current directed out 
of the X- Y mesh. We take for this test the form 

J,(i, j) = expf - [X(i) -a]‘/5} sin[7cY(j)/lO]. (29) 

A contour plot of this function is given in Fig. 2, where a = 3. Taking the curl of J, 
gives the vector components needed for the right-hand side of Eq. (10). These com- 
ponents are shown in the x - y plane by the vector plot in Fig. 3. We have 

1 
Scale = 0.367 - 

FIG. 3. The curl of J, shown in Fig. 2. 
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arbitrarily chosen B,(X = Xmin) = 2 + cos(n Y) and B,(X = X,,,) = -2 as 
dary conditions for this test case. Consistent with this choice to ensure B * 
are required to set BB,/i3x(X= Xmi,) = 71 sin(nY) and aB,/ax(X= X,,,) = 0. 

The numerical procedure discussed in Section 1Il.a for Eq. (10) has been applied 
to this example. The resulting test magnetic field vectors are shown in Fig. 4. T 
real test is now whether the original J, can be recovered by taking the curi of t 
magnetic field. The result of this numerical curl operation is shown in Fig. 5. Note 
that the scale factors for the minimum and maximum contours (shown on the 
upper left and right corners of the plots, respectively) are not the same as the input 
J, in Fig. 2. This is due to the additive constant required in J, so that the resulting 

field is consistent with the imposed boundary conditions. T is constant is roug 

> 10 
F = -0.106 

G = 0.087 

H = 0.260 

I = 0.473 

J = 0. 
1 

FIG. 5. Recovery of Jz from the curl of B shown in Fig. 3. Note that the minimum and maximum 
contour values (in the upper left and right corners, respectively) differ from those of the initial .i; by only 
3% after an additive constant of -0.202 is taken into account. 
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-0.202. After subtracting this constant, the new J, differs from the original by less 
than 3%, which is consistent with the truncation of our second-order algorithms on 
the test mesh. Finally, the largest V * B < 2 x 10e3. 

The B test proves that given an arbitrary plasma source J, and consistent exter- 
nally imposed boundary conditions, the correct B is obtained and it has acceptably 
small divergence. 

E Tests 

The streamlined Darwin E, calculation can be tested in much the same manner 
as used in the B tests. We find the task of decomposing j so troublesome with 
general boundary conditions that the question of how well the standard approach 
works is not considered. Thus, we present only the results of the test cases proving 
that the new iteration procedure works well. 

To demonstrate the streamlined E, technique, we need to verify that we can solve 
Eq. (21) and then extract the correct E,. To carry out this test, we proceed in the 
following manner. First, we begin with a known E,, which is used to form the right- 
hand side of Eq. (22). This known E, is obtained from a divergence-clean of an 
arbitrary vector E. We also choose an arbitrary ,LL The right-hand side of Eq. (22) is 
constructed by noting that it is equal to V*E, -,uE, and can be constructed, 
therefore, from the chosen quantities. The boundary conditions are that E, tangen- 
tial is zero at Xmin and X,,,. Finally, we reconstruct E, using these derived sources 
with the steps elucidated in Section 1II.b. 

We start by assuming an arbitrary E with components in the x - y plane. We use 
the form 

E(i, j)=exp( - [X(i)-a12/5} cos[nY(j)/lO][2, -$,I. (30) 

We also choose an expression for ,u; here we use 

p(i,j)=2[X(i)/20+ l-cos[7LY(j)/5]]. (31) 

The original E, Eq. (30), is shown in Fig. 6; the decomposed E, is shown in Fig. 7; 
and p, given by Eq. (31), is shown in Fig. 8. Following the test procedure outlined 
above, we applied the iteration for E, given in Section 1II.b. In five iterations, the 
first residue of Eq. (23) 

First Residue = V2$” + V . <" + ' (32) 

in step (3) is 317. x 10e4; in ten iterations it is 85.1 x 1O-4 and drops further to 
15.7 x 10d4 after 20 iterations. If an over-relaxation factor of 1.4 is used in 
generating the next iterate for rc/, the first residues (150. x 10-4, 32.6 x 10-4, and 
4.4 x 10-4, respectively) show more rapid convergence. 

After 20 iterations, the scalar function $ required to extract E, from l in step (5) 
is shown by contour plot in Fig. 9. The E, that results from this process is shown by 
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Cl 5 10 15 20 

X 

FIG. 6. Total E field selected for a test of the E, procedure. 

FIG. 7. Decomposed E, field obtained from E in Fig. 6. 

> 10 

5 

0 
0 5 10 15 20 

X 

FIG. 8. Test p factor for the new Darwin E, calculation test. 
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X 

FIG. 9. The scalar I) that is needed to extract E, from 5 in the final step 
calculation of Section 1II.b. 

of the streamlined E, 

vector plot in Fig. 10. Note in comparing the scale factors of Figs. 7 and 10 that 
vectors agree to nearly three significant figures. 

This is a rather stringent test of the streamlined algorithm because of the sharp 
gradients in the p test function. In typical previous Darwin applications, com- 
parisons were made between runs with, for example, three and five overall 
iterations. If the simulated physics remained invariant, the assumption was made 
that the E, iteration was “converged.” Our calculation will work at least as effec- 
tively for this type of test. When the E, calculation must satisfy more stringent 
requirements and, especially, for more complex boundary condition arrangements, 
our new procedure has the advantage. 

Finally, the number of overall iterations generally will decrease if we keep 1c, for 
the first guess on the next time-step. Many iterations are required to generate the 

X 

FIG. 10. Recovered E, to be compared with the input in Fig. 7. Note that the vector scale factor in 
the upper right agrees to three significant figures with the scale factor of the input E, given in Fig. 7. 
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long scale-length character of ic/, and this characteristic of $ changes more slowly 
with time than short wavelength phenomena. 

V. SUMM.~RY AND C0Nc~Us10Ns 

We have found a new streamlined method of implementing the Darwin mo 
that greatly facilitates its use in nonneutral plasmas with nearby bo~~da~~~s. 
Specifically, we have eliminated the need to decompose several miasma-derives 
source terms so that boundary conditions required for this purpose are no ~~~~er 
needed. We have tested the new methods and have verified that they work on sim- 
ple test cases. We are now implementing this new procedure in ~y~indri~a~ geometry 
with the ultimate application to accelerator physics, 
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